* magnitude 부분이 논란이 있으니 좀더 조사 要
q=s+i*a+j*b+k*c is a quternion if
(1) i^2,j^2, and k^2=-1,
(2) ij=-ji=k
(3) jk=-kj=i
(4) ki=-ik=j
(5) s,a,b,c are real numbers (scalar).
q1+q1 = (s1+s2)+i*(a1+a2)+j(b1+b2)+k*(c1+c2)
for two quternion q1=s1+i*a1+ ... and q2=s2+i*a2+... .
d*q1=d*s+i*(d*a1)+... for d is scalar.
q can be represented as q=(s,v) where v=(a,b,c) .. called ordered pair notation.
complex conjugate of q: (s,-v)
q*(complex conjugate of q): s^2+v·v
the magnitude of q : sqrt(q*complex conjugate of q)
NOTE: the above is the same as in complex number system.
inverse of q=(s,-v)/(2nd power of the magnitude of q)=(s,-v)/(s^2+v·v)
q*(inverse of q)=1 (becomes scalar) =(1, 0)
then q1+q2 = (s1+s2, v1+v2)
q1*q2 = (s1+i*a1+j*b1+k*c1)*(s2+i*a2+j*b2+k*c2)
= s1*s2 +(i^2)*a1a2+(j^2)*b1b2+(k^2)*c1c2
+s1(i*a2+j*b2+k*c2)+ s2(i*a1+j*b1+k*c1)
+jk(b1c2-b2c1)
+ki(c1a2-a1c2)
+ij(a1b2-a2b1)
= (s1s2-v1·v2, s1*v2+s2*v1+v1×v2)
q=s+i*a+j*b+k*c is a quternion if
(1) i^2,j^2, and k^2=-1,
(2) ij=-ji=k
(3) jk=-kj=i
(4) ki=-ik=j
(5) s,a,b,c are real numbers (scalar).
q1+q1 = (s1+s2)+i*(a1+a2)+j(b1+b2)+k*(c1+c2)
for two quternion q1=s1+i*a1+ ... and q2=s2+i*a2+... .
d*q1=d*s+i*(d*a1)+... for d is scalar.
q can be represented as q=(s,v) where v=(a,b,c) .. called ordered pair notation.
complex conjugate of q: (s,-v)
q*(complex conjugate of q): s^2+v·v
the magnitude of q : sqrt(q*complex conjugate of q)
NOTE: the above is the same as in complex number system.
inverse of q=(s,-v)/(2nd power of the magnitude of q)=(s,-v)/(s^2+v·v)
q*(inverse of q)=1 (becomes scalar) =(1, 0)
then q1+q2 = (s1+s2, v1+v2)
q1*q2 = (s1+i*a1+j*b1+k*c1)*(s2+i*a2+j*b2+k*c2)
= s1*s2 +(i^2)*a1a2+(j^2)*b1b2+(k^2)*c1c2
+s1(i*a2+j*b2+k*c2)+ s2(i*a1+j*b1+k*c1)
+jk(b1c2-b2c1)
+ki(c1a2-a1c2)
+ij(a1b2-a2b1)
= (s1s2-v1·v2, s1*v2+s2*v1+v1×v2)
'수학 관련' 카테고리의 다른 글
Nomalized Cross Correlation (0) | 2012.04.04 |
---|---|
Scalar Field, Vector Field, Scalar Potential (0) | 2011.07.13 |
Dimension (0) | 2010.06.22 |
옛날엔, 연속인 함수가 적어도 유한개의 점에서만 미분 불가능이라고 생각했었다. (0) | 2009.10.15 |
(용어) "root" or "zero" (0) | 2009.09.23 |